DESIGN OF CANTILEVER TYPE SHEET PILE PENETRATING SAND
Enter the value of the dry unit weight of sand (gd) kN/m3
Enter the value of the saturated unit weight of sand (gsat) kN/m3
Enter the sheet pile depth to sea level (L1) m
Enter the sheet pile depth from sea level to dredge line (L2) m
the value of the effective unit weight of sand gsub = gsat - (gw = 9.81 kN/m3) = kN/m3
coefficient of active earth pressure (Ka) = (1 - sin f) / (1 + sin f) =
coefficient of passive earth pressure (Kp) = (1 + sin f) / (1 - sin f) =
pressure P1 = gd L1 Ka = kPa
pressure P2 = (gd L1 + gsub L2) Ka = kPa
distance L3 = P2 / [gsub (Kp - Ka)] = m
force F1 = P1 L1 / 2 = kN/m
force F2 = P1 L2 = kN/m
force F3 = (P2 - P1) L2 / 2 = kN/m
force F4 = P2 L3 / 2 = kN/m
force F = F1 + F2 + F3 + F4 = kN/m
distance d = [F1 (L1 / 3 + L2 + L3) + F2 (L2 / 2 + L3) + F3 (L2 / 3 + L3) + F4 (2 L3 / 3)] / F = m
pressure P5 = (gd L1 + gsub L2) Kp + gsub L3 (Kp - Ka) = kPa
coefficient A1 = P5 / [gsub (Kp - Ka)] =
coefficient A2 = 8 F / [gsub (Kp - Ka)] =
coefficient A3 = 6 F [2 d gsub (Kp - Ka) + P5] / [(gsub)2 (Kp - Ka)2] =
coefficient A4 = F (6 d P5 + 4 F) / [(gsub)2 (Kp - Ka)2] =
To find the length L4, the following equation must satisfy
(L4)4 + A1 (L4)3 - A2 (L4)2 - A3 L4 - A4 = 0
Enter a trial value for the length L4 m
the right hand side (RHS) of the above L4 equation , if different from zero, assume a new trial value for L4, enter in the box in the previous step and calculate RHS again. Repeat these steps until RHS matches zero.
the theoretical depth of sheet pile D = L3 + L4 = m
the actual depth of sheet pile Dact = 1.3 D = m
the total height of sheet pile L1 + L2 + Dact = m
Calculation of maximum moment and section modulus
distance of plane of zero shear Z' = [2 F / gsub (Kp - Ka)]1/2 = m
maximum moment Mmax = F (d + Z') - [gsub (Kp - Ka) / 6] (Z')3 = kN.m
Type
(sall) MN/m2
Enter, from Table above, the allowable flexural stress of the sheet pile material sall = MN/m2
section modulus of sheet pile S = Mmax / sall = m3/m of wall
Summary of Design
Angle of shearing resistance of sand (f) degrees
Dry unit weight of sand (gd) kN/m3
Saturated unit weight of sand (gsat) kN/m3
Depth to sea level (L1) m
Depth from sea level to dredge line (L2) m
Theoretical depth of sheet pile D = m
Actual depth of sheet pile Dact = m
Total height of sheet pile L1 + L2 + Dact = m
Maximum moment Mmax = kN.m
Allowable flexural stress of the sheet pile material sall = MN/m2
Section modulus of sheet pile S = m3/m of wall
Copyright 2007-2024 A. Ghaly. All rights reserved. Contact A. Ghaly at ghalya@union.edu
Anchor Design Homepage | A. Ghaly Homepage | Union College Homepage
Disclaimer: The author disclaims any and all responsibility for the application of stated principles, and shall not be liable for any loss or damage arising therefrom.